Monday, 20 January 2014

Brief on Hadoop


BRIEF ON HADOOP

Ø Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware. Hadoop is an Apache top-level project being built and used by a global community of contributors and users. It is licensed under the Apache License 2.0.
Ø The Apache Hadoop framework is composed of the following modules:
ü Hadoop Common - contains libraries and utilities needed by other Hadoop modules
ü Hadoop Distributed File System (HDFS) - a distributed file-system that stores data on the commodity machines, providing very high aggregate bandwidth across the cluster.
ü Hadoop YARN - a resource-management platform responsible for managing compute resources in clusters and using them for scheduling of users' applications.
ü Hadoop MapReduce - a programming model for large scale data processing.

Ø All the modules in Hadoop are designed with a fundamental assumption that hardware failures (of individual machines or racks of machines) are common and thus should be automatically handled in software by the framework. Apache Hadoop's MapReduce and HDFS components originally derived respectively from Google's MapReduce and Google File System (GFS) papers.

Ø Beyond HDFS, YARN and MapReduce, the entire Apache Hadoop “platform” is now commonly considered to consist of a number of related projects as well – Apache Pig, Apache Hive, Apache HBase, and others.


Ø Hadoop consists of the Hadoop Common package, which provides filesystem and OS level abstractions, a MapReduce engine (either MapReduce/MR1 or YARN/MR2) and the Hadoop Distributed File System (HDFS). The Hadoop Common package contains the necessary Java Archive (JAR) files and scripts needed to start Hadoop. The package also provides source code, documentation and a contribution section that includes projects from the Hadoop Community.

Ø For effective scheduling of work, every Hadoop-compatible file system should provide location awareness: the name of the rack (more precisely, of the network switch) where a worker node is. Hadoop applications can use this information to run work on the node where the data is, and, failing that, on the same rack/switch, reducing backbone traffic. HDFS uses this method when replicating data to try to keep different copies of the data on different racks. The goal is to reduce the impact of a rack power outage or switch failure, so that even if these events occur, the data may still be readable.
  
Ø A small Hadoop cluster includes a single master and multiple worker nodes. The master node consists of a JobTracker, TaskTracker, NameNode and DataNode. A slave or worker node acts as both a DataNode and TaskTracker, though it is possible to have data-only worker nodes and compute-only worker nodes. These are normally used only in nonstandard applications. Hadoop requires Java Runtime Environment (JRE) 1.6 or higher. The standard start-up and shutdown scripts require Secure Shell (ssh) to be set up between nodes in the cluster.
  

Ø In a larger cluster, the HDFS is managed through a dedicated NameNode server to host the file system index, and a secondary NameNode that can generate snapshots of the namenode's memory structures, thus preventing file-system corruption and reducing loss of data. Similarly, a standalone JobTracker server can manage job scheduling. In clusters where the Hadoop MapReduce engine is deployed against an alternate file system, the NameNode, secondary NameNode and DataNode architecture of HDFS is replaced by the file-system-specific equivalent

No comments:

Post a Comment